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Nonstationary Pomeau-Manneville intermittency in systems with a periodic parameter change
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Pomeau-Manneville intermittency in nonstationary systems is investigated. If one of the parameters charac-
terizing a dynamical system is changed periodically, periodic orbits may appear even when the value of this
parameter remains in a range which, in the stationary case, yields chaotic behavior. This property may be used
for the control of systems exhibiting intermittency. If the parameter change is not large enough, a periodic orbit
does not appear but the distribution of the laminar phases is modified. In the case of type I intermittency, this
means a broadening of such a distribution or, alternatively, a splitting of its right peak. We present a theory of
these phenomena. Numerical simulations both for one-dimensional maps and for flows support our predictions.
Some of the phenomena discussed here were observed earlier in time series of heart rate variability.
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I. INTRODUCTION

In nonlinear dynamics the term “intermittency” means a
switching of the state of the system between two different
types of behavior, e.g., a periodic and a chaotic behavior. The
phenomenon was studied by Pomeau and Manneville who, at
the end of the 1970s, were the first to investigate intermit-
tency in the temporal domain �1,2�. They also classified the
elementary kinds of intermittency phenomena grouping them
into three categories according to the type of bifurcation that
is associated with the given intermittency. Today the best
known is type I intermittency which is the effect of the prox-
imity of the system to a tangent bifurcation �i.e., a saddle-
node bifurcation�. In this kind of bifurcation two solutions
appear—a hyperbolic saddle and a node. It is in this range of
control parameter space just before the tangent bifurcation
occurs that one observes a chaotic motion consisting of lami-
nar phases �in which the motion is almost periodic� and of
chaotic bursts.

Type I intermittency has been observed in many experi-
ments, and has also been theoretically investigated �3�. The
authors of Ref. �3� showed that there is a recursion relation
valid close to the bifurcation point:

yn+1 = yn + �yn
2 + � �1�

where � is a parameter depending on the shape of the one-
dimensional map, and � is proportional to the difference be-
tween the actual and the critical values of the control param-
eter. The variable yn is a measure of the distance from the
bifurcation point along the line yn+1=yn. If ��0 Eq. �1� has
two fixed points—one stable and one unstable. If �=0, the
plot of Eq. �1� becomes tangent to the diagonal and the bi-
furcation occurs. If ��0, there is no real solution of Eq. �1�
but we obtain the laminar phase instead: successive iterates
of Eq. �1� differ only by a small value. For small � the
number of iterates within the laminar phase is large. Note
that Eq. �1� is a model of the laminar phase only so that the
chaotic bursts must be introduced into simulations artifi-
cially.

Using this simple model, Hirsch showed many properties
of type I intermittency. For example, he obtained the maxi-

mal length of laminar phases:
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lmax =
2

���
arctan� y0

��/�
� �2�

and the probability distribution for the lengths l of laminar
phases:

P�l� =
�

2y0
�1 + tan2	arctan� y0

��/�
� − l���
� �3�

where � is proportional to the difference between the actual
and the critical values of the control parameter, � is the
second derivative of the map �1�, and y0 defines the end of
the intermittency channel.

Pomeau and Manneville also defined two other kinds of
intermittency: type II intermittency, related to the Hopf bi-
furcation, and type III, occurring in systems in which reverse
period doubling bifurcation is possible �2�.

Intermittency in stationary states has been the subject of a
very large number of papers. But in real complex systems,
one can seldom observe ideal stationary states. In many of
these systems we should take into account random noise,
which can modify the behavior of a system in a major way.
Another effect may be due to a nonrandom, periodic or not,
control parameter change. In their work, Hirsch et al. �3�
investigated the effect of additive Gaussian noise on the
properties of type I intermittent system. A system with a
periodic parameter change or subject to parametric noise was
investigated numerically in Ref. �4�. Intermittency in such a
nonstationary system is quite different from that described
earlier by other authors. Depending on the scheme of param-
eter change, either a modification of the probability distribu-
tion of the lengths of laminar phases is obtained or, in some
cases, intermittency can be destroyed and a periodic orbit
appears �4�. As we will see below, this last result can be very
useful in controlling chaos in systems with Pomeau-
Manneville intermittency.

Control of chaos is one of the most important applications
of nonlinear dynamics �2,5,6�. In many cases, it is desirable
to force a system in a chaotic state to maintain periodic be-
havior. There are several methods of controlling chaotic dy-
namical systems �2� in which small changes of the accessible
control parameter are applied.
©2006 The American Physical Society-1
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The aim of the best known method from this group �the
Ott-Grebogi-Yorke �OGY� algorithm �5�� is to stabilize an
unstable periodic orbit which belongs to the set forming the
chaotic attractor. When the trajectory of the system comes
close to the desired unstable periodic orbit, small changes of
control parameter are applied to force the trajectory onto the
stable manifold. This assures that the trajectory will not es-
cape from the vicinity of the periodic orbit. The OGY
method has been successfully applied to various physical �7�,
chemical �8,9�, and medical �10� systems.

To make possible the control of the dynamics of some
more complex systems, several methods similar to the OGY
algorithm were developed. Triandaf and Schwarz introduced
the idea of tracking unstable orbits �6�. The so-called con-
tinuation method allows one to follow unstable orbits over a
large range of parameter values and through the period-
doubling bifurcations �11�. Tracking allows one not only to
stabilize an unstable orbit embedded in a chaotic attractor but
also to force a system to remain in the vicinity of an unstable
orbit when some stable orbit is present simultaneously �e.g.,
beyond the point of a period-doubling bifurcation�. Orbit
tracking was successfully implemented in controlling chaos
in such systems as a modulated CO2 laser �12�. It should be
emphasized that this method can be applied also for nonsta-
tionary systems, i.e., when the control parameter changes
with the time �13�.

The method of controlling on-off intermittent dynamics
proposed in �14� is also based on the OGY method. The main
idea of this method is to not allow a trajectory of the system
to escape from the vicinity of an “off” state. For this purpose,
parameter changes are computed similarly as in the original
OGY method.

We present a theory of intermittency in discrete dynami-
cal systems and flows. In Sec. II, we obtain analytically the
laminar phase length distribution which occurs in type I in-
termittency in a system with a dichotomous control param-
eter change. In Sec. III, we describe the appearance of peri-
odic orbits due to a periodic parameter change in a system
exhibiting a Pomeau-Manneville intermittency. This effect
may be used to control the dynamics of such a system. All
the theoretical considerations are supported by numerical ex-
periments in discrete systems and flows. In Sec. IV we
present the conclusions.

II. EFFECT OF DICHOTOMOUS PARAMETER CHANGE
ON THE PROBABILITY DISTRIBUTION OF
LAMINAR PHASE LENGTHS IN TYPE I

INTERMITTENCY

Consider type I intermittency in a system in which the
value of the control parameter is changed periodically. As
will be shown in Sec. III, if the parameter change exceeds a
certain threshold, a stable periodic orbit may appear. But if
the changes of the control parameter are too small, one will
not obtain such an orbit. The trajectory of system will remain
in the intermittency state. One can expect that such an inter-
mittency differs from the one in the stationary state.

This case was investigated numerically for the logistic

map in Ref. �4� and it was found that, if a stable orbit does
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not appear, two characteristic phenomena can be observed:
�a� a broadening of the laminar phase length distribution and
�b� a splitting of the right peak of this distribution. The au-
thors used the same value of control parameter change every
time and observed that the final effect depends on the fre-
quency of the parameter change. The main motivation for
this research was that similar effects can be observed in real
systems. In Refs. �4,15� laminar phase length probability
density distributions characteristic for type I intermittency
were found for 24-h heart rate variability recordings The
splitting of the right peak was clearly seen for these distri-
butions �Figs. 1 and 2�.

In this section, we form a theory that explains the results
of the numerical experiments of Ref. �4�. Let us consider a
system in which a sequence of iterations is repeated: n itera-
tions using a specific base value of the control parameter are
followed by m iterations with this parameter changed to a
different value �n and m are natural numbers�. We will de-
note by G��a ;xi� the �n+m�Tth iteration of the map and
assume that for the first n iterations the control parameter
value is a while for the next m iterations it is a+�a. The
sequence of control parameter change is repeated T times.
Next, the whole procedure is repeated. Here, the notation
G�0;xi� means simply the �n+m�Tth iteration of the station-
ary map.

When our system is within the parameter range where
intermittency appears, we can write

FIG. 1. Laminar phase probability density distribution for the
24 h heart rate variability recording of the patient DWD �after
�15��. This was a postmyocardial infarct patient with many ven-
tricular arrhythmia events during the recording and a cardiac arrest
1 h before its end.

FIG. 2. Laminar phase probability density distribution for the
24 h heart rate variability recording of the patient FTCH �after �4��.
The patient had sinus and atrial heart rhythm with an extremely
increased number of ventricular arrhythmia �around 50% of heart

cycles were ectopic�.
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G�0;xi� � xi

where xi belongs to the period-T orbit.
If we were in the range of periodic motion, we would

have of course

G�0;xi� = xi, i = 1,2, . . . ,T . �4�

Let us define

�i =
G�0;xi� − xi

n + m
. �5�

The value of �i is a measure of the minimal distance between
the plot of the Tth iteration of the map and the diagonal. Note
that �i given by Eq. �5� is a different parameter from the �
present in Eq. �1� but it is proportional to it. Thus, the maxi-
mal laminar phase length l depends on the value of �i �2,3�:

l � ��i�−1/2. �6�

The modulus in Eq. �6� comes from the fact that �i defined
by Eq. �5� can be both positive and negative.

Now we define a similar value for the nonstationary case:

�i� =
G��a;xi� − xi

n + m
. �7�

We assume that the new value of maximal laminar phase
length �and also the position of the right peak of the distri-
bution� satisfies the dependence

li� � ���i�
−1/2, �8�

where the index i means that we consider a trajectory which
would be in the vicinity of the point xi in the first iteration
using the base value of the control parameter. If we know the
laminar length l in the stationary case, we can compute the
nonstationary value as

l�i

l
=� �i

��i

=� �n + m��i

�G�0;xi�
��a

�a + �n + m��i

�9a�

where the left side of Eq. �7� was expanded into a series with
respect to �a and all nonlinear terms were neglected. As we
will show in the next sections, this approximation works
very well.

All the difficulty in predicting the position of the right
peak of the distribution is to compute the derivative of the
function G. This can be done if we treat G as a composition
of the map f�a ;x�. This leads to the equation

�G�0;xi�
��a

= 

q=1

T



j=qn+�q−1�m

q�n+m�−1 � �
k=j+1

T�n+m�
�

�x
f�a;xi+k−1��

�
�

�a
f�a;xi+j−1� . �10a�

For a derivation of Eq. �10a� see the Appendix.
The above described method of finding the position of the

right peak of the distribution can be simply generalized to
the case in which the control parameter is altered between

more than two values. In such a case, one of the values of the
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parameter change �a has to be set as the base value and
other values of the parameter change are determined by this
base value. The new position of the right peaks can be com-
puted again from an equation very similar to Eq. �9a� but the
derivative of the function G has to be computed from a
slightly more complicated equation than Eq. �10a�.

Suppose that the first n iterations run without parameter
change, the next m1 iterations with the parameter change
equal to �a, and the next m2 with �a2. We have k possible
values in all �some of them may be equal�. Let us define

�p =
�ak

�a
�p = 1, . . . ,k and �1 = 1� ,

M0 = m0 � n ,

n + 

p=1

j

mp = Mj ,

N � Mk = n + 

p=1

k

mp.

Now we can write the derivative of G instead of Eq. �10a�
as

�G�0;xi�
��a

= 

q=1

T



p=1

k



j=�q−1�N+Mp−1

�q−1�N+Mp−1 � �
l=j+1

TN
�

�x
f�a;xi+l−1��

��p
�

�a
f�a;xi+j−1� , �10a��

and, instead of Eq. �9�, we have

l�i

l
=� �i

��i

=� N�i

�G�0;xi�
��a

�a + N�i

. �9a��

When T is the common denominator of �n+m� and N,
instead of the function G, we can define more simply the
function G�:

G��a;xi� = TG���a;xi� ,

�G��0;xi�
��a

= 

j=n

n+m−1 � �
k=j+1

n+m
�

�x
f�a;xi+k−1�� �

�a
f�a;xi+j−1� .

�10b�

This equation contains a smaller number of sums than Eq.
�10a�. Instead of Eq. �9a� we obtain

l�i

l
=� �i

��i

=� �n + m��i

T
�G��0;xi�

��a
�a + �n + m��i

. �9b�

When there are more than two different values of the
control parameter, we use, instead of Eqs. �9a�� and �10a��
-3
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l�i

l
=� �i

��i

=� N�i

T
�G��0;xi�

��a
�a + N�i

, �9b��

�G��0;xi�
��a

= 

p=1

k



j=Mp−1

Mp−1 � �
l=j+1

N
�

�x
f�a;xi+l−1���p

�

�a
f�a;xi+j−1� .

�10b��

A. Example: The logistic map

Consider the well-known logistic map:

xn+1 = axn�1 − xn� . �11�

The widest periodic window for the logistic map appears
at the value of the control parameter a=aC=1+�8
�3.828 427 125. . ., at which a saddle-node bifurcation oc-
curs �3�. If the value of a is slightly less than aC, our system
exhibits type I intermittency. The periodic orbit within this
window appears as an effect of the tangent bifurcation and
consists of three points: x1=0.159 928 815. . ., x2
=0.514 355 268. . ., and x3=0.956 317 843. . ..

Let us fix the base value of a in Eq. �11� equal to 3.828.
The values of � computed from Eq. �5� are equal: �1
=3.333�10−4, �2=8.660�10−4, and �3=−9.532�10−5.

Now let us consider increasing the value of a to
3.828 427 122 5 at every second iteration. Using Eqs. �9a�
and �10a� we can compute the new position of the right peak
for every point belonging to the orbit. We obtain

l�1

l
� 1.413 93,

l�2

l
� 1.414 71,

l�3

l
� 1.413 92.

These three values are almost identical. Since the laminar
phase length is an integer, in this case the three peaks cannot
be recognized as long as the maximum of laminar phase
length in the stationary case is less than 10 000. For the base
value of the control parameter we had assumed, this length is
close to 40 so we are not able to observe the splitting of the
right peak of the distribution. Instead a broadening of the
distribution will be observed. Figure 3 depicts the stationary
�a� and the nonstationary �b� distributions. Computing the
ratio of the positions of the maxima of the distributions
yields 76/54=1.4074—in a very good agreement with the
theoretical prediction. The small difference between the nu-
merical result and that obtained theoretically is due to the
approximations used and to the fact that the observed lami-
nar phase length can only be a natural number.

Now let us consider n=10 iterations with a=3.828 and
m=2 �at which the value of a is increased to
3.828 427 122 5�. The ratio of the maxima of the laminar
phase lengths is equal to about 1.167 for i=1 or 3 and 0.960
for i=2. These values are quite different. This means that a
splitting of the right peak of the distribution will be visible.
Figure 4 shows such a nonstationary distribution with two
right peaks: the ratio l� / l is now 63/54=1.167 and 52/54
=0.963, respectively. Numerous examples of type I intermit-
tency with a distribution of laminar phases and a split right
066203
peak similar to that in Fig. 4 were measured in human heart
rate variability �4,15� �Figs. 1 and 2�.

Now consider that we have three, instead of two, different
values of the control parameter in successive iterations of the
logistic map. For example, let us consider the first iteration
with a=3.828, the second iteration with a=3.8282, and the
third with a=3.8279. This leads to the following values of
the parameters:

m0 = n = 1, m1 = m2 = 1, �a = 0.0002,

�1 = 1, �2 = − 0.5, k = 2,

FIG. 3. Probability distribution of the lengths of laminar phases
for the logistic map for the stationary case �a� with control param-
eter set equal to 3.828, and for the nonstationary case when the
control parameter is alternated between 3.828 and 3.828 427 122 5
�b�.

FIG. 4. Probability distribution of the lengths of laminar phases
for the logistic map for the nonstationary case with n=10 and m
=2. The arrows mark the ratio of the position of the given peak to
the right peak of the distribution in the stationary case �Fig. 3�a�� in

excellent agreement with the theoretical predictions.
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M0 = 1, M1 = 2, M2 = N = 3.

Inserting these into Eq. �10b�� leads to

�G��0;xi�
��a

= − 0.5xi−1�1 − xi−1� + a�1 − 2xi−1�xi−2�1 − xi−2� .

�12�

This equation, together with �9b�� allows us to compute the
position of the right peaks of the distribution:

l�1

l
= 1.469,

l�2

l
= 0.995,

l�3

l
= 0.879.

The values obtained are completely different, so we expect in
this case that the right peak of the probability distribution of
the laminar phase lengths will split into three, not into two
peaks. Figure 5 depicts such a distribution with the right
peak split into three and the corresponding values of the
ratios obtained numerically. Such a triple splitting of the
right peak was also obtained for some of the cases of type I
intermittency obtained for the heart rate variability �4,15�.

B. Example: The Rössler system (a flow)

We will apply our theory to the well-known Rössler sys-
tem �16�, described by the three equations

dX

dt
= − Y − Z ,

dY

dt
= X + AY ,

dZ

dt
= B + Z�X + C� . �13�

This system is described by three real variables and has
three parameters A, B, and C. Let us set the values of the
parameters B=2.0 and C=4.0. A will be our control param-
eter. The Rössler system then goes through a saddle-node
bifurcation at A=0.458. If the value of A is slightly smaller

FIG. 5. Probability distribution of the lengths of laminar phases
for the logistic map for the nonstationary case: three, instead of two,
different values of the control parameter in successive iterations of
the logistic map. The arrows mark the ratio of the position of the
given peak to the right peak of the distribution in the stationary case
�Fig. 3�a�� in excellent agreement with the theoretical predictions.
than that, type I intermittency is obtained.
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To apply our theory developed for one-dimensional maps
to this system, one should extract such a map. We formed the
first return map of the successive maxima of Y. Figure 5
depicts a plot of this function. The third iteration of this
function is shown in Fig. 6 �dots� together with the polyno-
mial fit �solid line�. We can clearly see the characteristic
three narrow intermittency channels.

Set the values of the parameters B=2.0 and C=4.0. The
base value of A will be set at 0.4576 and increased to 0.4581
for one time interval per three between the successive
maxima of the Y variable. We obtain a broadening of the
probability distribution. Such a distribution, compared to the
stationary case �Fig. 6�a�� is shown in Fig. 6�b�.

Extracting the map as above from Eq. �9a�, one obtains
that the function �l / l��2= f��A� is linear. In fact, we can
transform this equation into

� l

l�
�2

=

�G�x;0�
��A

�n + m��
�A + 1. �14�

The plot of this function is shown in Fig. 7 for several values
of �A �squares�. A linear function with a unit direction co-
efficient is an excellent approximation of this dependence
�solid line�.

Now, let us consider new values for the parameters: A
=0.45, B=3, while C is changed between the two values
4.5705 and 4.570 55. In this case, we obtain numerically a
characteristic splitting of the right peak into two.

A theoretical computation of the positions of split peaks is
more difficult than in the case of the logistic map �or any
system with discrete time�, although we can approximate the
functional dependence of the maximum of Y as a function of

FIG. 6. Broadening of the distribution of the lengths of laminar
phases for the Rössler system as a result of nonstationarity: �a�
stationary case; �b� nonstationary case. For details see text.
the previous maximum f�A ;x� on x. However, we do not
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know the exact form of the dependence of this function on A.
To solve this problem, we find a polynomial approximation
of the function f�A ;x� for a few different values of A and
obtain the required derivative �f�A ;x� /�A by numerical dif-
ferentiation. To enhance the accuracy of this calculation, it is
better to fit the polynomial only in the relatively small neigh-
borhood of a maximum �each maximum may give a slightly
different form of the approximating polynomial�. We then
compute the new positions of the right peaks and obtain

l�1

l
= 1.1699,

l�2

l
= 0.991,

l�3

l
= 0.979.

These three values do not differ very much but, since we are
very close to the bifurcation point, the typical laminar phase
length is much greater than 50. In such a case, differences of
the order of 0.2 in the ratio let us discern only two peaks of
the distribution �the second and third peaks are indistinguish-
able�. This is clearly seen in Fig. 8.

Finally, one should stress that if the control parameter
were changed independently of the value of Y �e.g., if there
were a metronomic process forcing such changes�, the func-
tion f�A ;x� would contain an infinite number of different
values of the control parameter. We would then expect the
distribution to be similar as in the case of parametric noise
�15�, i.e., there will be a long tail of the distribution extend-
ing toward large laminar phase lengths. Such a plot is shown
on Fig. 9.

III. PERIODIC ORBITS IN A SYSTEM EXHIBITING
POMEAU-MANNEVILLE INTERMITTENCY

UNDERGOING PERIODIC PARAMETER CHANGE

Consider a one-dimensional map in a Pomeau-Manneville
intermittency state. This means that there are long periods of
time during which the trajectory of the system remains close
to a periodic orbit stable in another control parameter range.
We will denote the period of this orbit by T.

The elements of a period-T orbit are the fixed points of

FIG. 7. The square of the ratio of the laminar phase length l� for
the nonstationary Rössler system to the laminar phase length l in the
stationary case is a linear function �fit, solid line� of the magnitude
of the control parameter change �A �squares�.
the T iterate of the map,

066203
FIG. 8. Split peaks in the distribution of the laminar phases
lengths for the Rössler system as a result of nonstationarity: �a�
stationary case; �b� nonstationary case. For details see text.
FIG. 9. A long tail in the distribution of the lengths of laminar
phases in the Rössler system appears as a result of a metronomic
forcing of the control parameter change: �a� stationary case; �b�
nonstationary case. The parameters B and C were set as before
while the parameter A was increased to 0.448 39 for 4 s with a
period equal to the period of the original periodic orbit �the base

value of A was 0.448 37�.
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fT�a;xi� = xi, �15�

where a denotes the control parameter and xi the points be-
longing to the orbit. However, in our system, we do not have
a stable periodic orbit but intermittency so

fT�a;xi� − xi � 0. �16�

One can then ask whether there is a value a� of the control
parameter such that, if we set a=a� once every T iterations,
we will observe a periodic orbit. If the system returns after T
iterations to the same point, it will return infinitely many
times. So we can write the condition as follows:

f„a�; fT−1�a;xi�… = xi. �17�

As we are interested in the laminar phase one can assume
that

��a� 	 a, a� − a = �a . �18�

In such a case, one may expand the left side of Eq. �6�
into a series and neglect all nonlinear terms:

f„a + �a; fT−1�a;xi�… = fT�a;xi� +
�f„a; fT−1�a;xi�…

�a
�a .

�19�

Using the approximation

fT−1�a;xi� � xi−1 �20�

we can rewrite Eq. �17� as

fT�a;xi� +
�f�a;xi−1�

�a
�a = xi �21�

and the critical value of parameter change �ac at which a
periodic orbit appears is

�aC =
xi − fT�a;xi�
�f�a;xi−1�

�a

. �22�

This result is a special case of Eq. �9a�. We can obtain Eq.
�22�, if we demand that the value under the square root in
Eq. �9a� be infinite or negative. This leads to a nonreal value
of the position of the right peak and should be interpreted as
a condition for the appearance of a periodic orbit. When we
set n=T−1, m=1 and set the denominator of Eq. �9a� equal
to zero, we again obtain Eq. �22�. These are precisely the
conditions discussed in Ref. �4� at which a periodic orbit was
obtained within the parameter range for stationary intermit-
tency.

It should be stressed that the required value of the control
parameter change can be either positive or negative, accord-
ing to the sign of the difference in the numerator of Eq. �22�
and of the derivative. In particular, the periodic orbit may
appear also when one departs from the critical value of the
control parameter given by Eq. �23�. This is a very interest-
ing circumstance. We expect that this property may be very
useful for the control of intermittency in systems in which
the critical value of the parameter cannot be obtained experi-

mentally.
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Of course, there is not only a single value of the control
parameter change at which the periodic orbit appears. Such
an orbit can be stabilized also if we use a value �a��aC �if
�aC is positive� or �a��aC �if it is negative�. In such cases
the orbit moves toward the point where the modulus of Eq.
�16� is greater than the smallest vertical distance between the
diagonal and the T iterate of the map. It can be shown that, in
most systems, especially for all systems exhibiting type I
intermittency, there are two points that have this property. At
one of them the periodic orbit can be stabilized.

The above described method of control of intermittency
can also be applied to flows. This is possibly because a one-
dimensional map may be extracted from many such flows by
a variety of methods in the literature �see, e.g., �2,17��. One
may then apply to these maps the method of control devel-
oped above.

Finally, we note that periodic change of the control pa-
rameter can be considered in fact to be a replacement of the
original dynamical system by a new system, close to the
previous one. In fact, if the value of the control parameter
changes, e.g., once every T iterations, we can define a new
map in the form

F�x� � f„a�; fT−1�a;x�… .

Such a map may exhibit some properties different from
those of the original, simple T-iterated map, e.g., Eq. �17�
represents the condition for the map F to possess a stable
point. In the same way, the results of Sec. II can be rewritten
in terms of the function F.

A. Example of a one-dimensional discrete system: The logistic
map

The appearance of periodic orbits in a nonstationary form
of the system described by the logistic equation was ob-
served by the authors of Ref. �4�. However, there, no specific
value of parameter change or condition leading to appear-
ance of periodic orbits in this system was given. Finding the
required value of parameter change is the aim of this section.

Let us set the value of the control parameter at a=3.828
�4�. Now we can simply compute the value of the parameter
change required from Eq. �22� for all of the points forming
the orbit. We then obtain three values for the parameter
change for i=1,2 ,3. Two of these are negative and one is
positive: �a1=−7.968. . . �10−3; �a2=−6.446. . . �10−3;
�a3=3.816. . . �10−4.

Negative values of the required control parameter change
obtained analytically indicate that it is possible to obtain a
stable periodic orbit by moving away from the saddle-node
bifurcation. One can check numerically that such an orbit
appears if the value of control parameter is decreased down
to 3.82 once every three iterations.

The analytical results explain why a periodic orbit was
obtained in the numerical experiment of Ref. �4�. There the
magnitude of the control parameter change was �a
=4.271 225�10−4 which is less than �a3. We now know,
having computed the required values of �a, that such an
orbit can be observed also for a smaller value of the param-

eter change. Increasing a to 3.828 381 4 once every third
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iteration should be enough to observe a stable period-3 orbit.
Figure 10 depicts this orbit.

It is also possible to observe a periodic orbit by changing
the parameter once every six iterations �i.e., one iteration per
two periods of the orbit�. The orbit then obtained has a pe-
riod of 6, but it is very similar to the period-3 orbit described
above. The true structure of this orbit may be seen only in
magnification. Such an orbit is shown in Fig. 11.

B. Example: The Rössler system (a flow)

We will apply our theory to the Rössler system of Sec.
II B. Let us set the values of the parameters B=2.0 and C
=4.0. A will be our control parameter again. As we have
mentioned, the Rössler system goes through a saddle-node
bifurcation at A=0.458. If the value of A is slightly smaller
than that, type I intermittency is obtained.

To apply our theory developed for one-dimensional maps
to this system one should extract such a map. We formed the
first return map of the successive maxima of Y. Figure 12
depicts a plot of this function. The third iteration of this
function is shown in Fig. 13 �dots� together with the polyno-
mial fit �solid line�. We can clearly see the characteristic
three narrow intermittency channels.

FIG. 10. Period-3 orbit obtained during type I intermittency in
the logistic map as a result of periodic changes of the control pa-
rameter: the base value was 3.828 and the parameter was changed
to 3.828 381 4 every three iterations.

FIG. 11. Periodic orbit obtained during type I intermittency in
the logistic map as a result of periodic changes of the control pa-
rameter: the base value was 3.828 and the parameter was changed
to 3.828 35 every six iterations. The orbit is in fact a period-6 orbit

�see magnification�.
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To predict the boundary value of the parameter change at
which the stable orbit will appear, it is necessary to find the
value of the first derivative of the fitted function �now treated
as a one-dimensional map�. Computing this value is not
trivial because one does not know the explicit form of the
dependence of this function on the parameter A. To solve this
problem, we plotted the fitting function in the vicinity of one
point belonging to the periodic orbit for A�AC. The slope of
a linear fit to this plot yields the derivative. We then repeated
this procedure for the rest of the points belonging to the
periodic orbit.

If we fix the value of A at 0.4576, we can compute the
differences given by Eq. �22� at all points of the orbit. At the
smallest of these differences �predicted in our case to be
�A=1.21�10−2� the periodic orbit will be obtained if the
control parameter is increased by �A for the time interval
during which the trajectory moves from one maximum to the
next, every three such intervals. In fact, to obtain the periodic
orbit, we should change the control parameter by at least
about �A=2.4�10−2. Note that the necessary step of ex-
tracting the discrete map from the flow introduces additional
errors and that our theory does not take this into account.
Consequently, the numerically obtained required value of the
parameter change is about twice larger than that predicted by
the theory. Thus, even in the case of a flow, after a short
transient, a stable periodic orbit will appear as an effect of

FIG. 12. First return map of the successive maxima of the vari-
able Y of the Rössler system �Eq. �13��. The period-3 orbit, appear-
ing as a result of the saddle-node bifurcation which occurs for a
value of the control parameter A close to that applied, is also
shown.

FIG. 13. Third iterate of the map of the successive maxima of
the variable Y of the Rössler system �Eq. �13�� in Fig. 3 �dots�. The
polynomial fit is marked by the solid line. The intermittency chan-

nels are well visible.
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periodic parameter change provided this change is large
enough �Fig. 14�.

C. The periodic parameter change as a method of chaos
control

Because, in a system exhibiting Pomeau-Manneville inter-
mittency, a periodic orbit may appear due to a periodic pa-
rameter change and not due to a tangent bifurcation, we can
consider this as a method of chaos control suitable for such
systems. The method can be compared to orbit tracking
�11–13�. Where the latter can stabilize an unstable orbit be-
yond a period-doubling bifurcation, our method forces the
system to stay close to an orbit that would appear at a saddle-
node bifurcation point at another control parameter value.
The main difference is that, in our case, in the parameter
range where our method is applied no periodic orbit �even an
unstable one� exists. This orbit has disappeared as an effect
of a tangent bifurcation. Another difference compared to all
other control methods based on parameter change is that one
does not need to monitor the state of the system because the
parameter changes are periodic. This should simplify con-
trolling the dynamics of a system that exhibits intermittency.

The method of control presented here requires the trajec-
tory of the uncontrolled system to return after a known pe-
riod of time into the vicinity of its starting point. So one can
suppose that our method is appropriate for all the systems
which possess this property, not only for systems exhibiting
type I and type III intermittency. In fact, we were able to
stabilize a periodic orbit in a system that was type V inter-
mittent �18,19� using this method. Also, in systems exhibit-
ing quasiperiodic motion, we managed to force the system
onto a periodic orbit for a very long, albeit limited, period of
time.

Although the proposed method of controlling a chaotic
system has its advantages, we should stress that this algo-
rithm can be applied only to systems completely or nearly
completely free of noise. This is because the modified system
is only marginally stable—the partial derivative

� �fT�x�
�x

�
x=xi

� 1.

For the system to be stable this derivative would have to be

FIG. 14. Periodic orbit obtained during type I intermittency in
the Rössler system by the control algorithm described in the text.
less than 1. The periodic change of the control parameter
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does not alter this. As an example, let us consider a logistic
map with the base value of control parameter equal to 3.828.
Change the control parameter to 3.828 427 122 5 every three
iterations and add Gaussian noise with zero mean. In such a
case, the control of the system will be effective only if the
magnitude of noise 
 is less than 3.2�10−5. For comparison,
the control of the logistic map with the same value of control
parameter as at the unstable saddle xus�0.738 77 using the
OGY method can be applied up to the magnitude of noise
2�10−3. In spite of this, we believe that the method of pe-
riodic parameter change may be useful even for systems with
noise. Even should noise prevent a full stabilization of the
orbit, periodic parameter change will increase the laminar
phase lengths and shorten the time of chaotic bursts.

IV. CONCLUSIONS

We presented several properties of nonstationary intermit-
tency. In Sec. II, we proposed a theory that explains the
distortions of the probability distribution of the laminar
phase lengths in such cases for which the periodic parameter
change does not lead to a periodic orbit. We provided equa-
tions allowing to obtain the shape of such distributions. The
properties of the distributions of laminar phase lengths mea-
sured during type I intermittency in human heart rate vari-
ability �4,15� may be explained by the theory discussed here.

In Sec. III we showed how a periodic change of the con-
trol parameter can lead to the appearance of a periodic orbit
in a system exhibiting intermittency, in both discrete maps
and flows. We showed how this property may be used as a
method to control chaos during intermittency.

The logical extension of the investigations presented here
will be to consider a nonstationary Pomeau-Manneville in-
termittency in systems with more than one dimension. Up to
now, we have found nonstationary type I intermittency in a
two-dimensional map and observed some of its properties
similar to the one-dimensional case. We expect to find in
such systems many more interesting phenomena.
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APPENDIX: DERIVATION OF EQ. (10a)

We will show how Eq. �10a� is obtained for fixed values
of T, n, and m.

Let us consider the map described by the equation

xn+1 = f�a;xn� . �A1�

We know that for a value aC close to the base value a the
saddle-node bifurcation takes place and a periodic orbit ap-
pears. Assume that this is a period-3 orbit, so T=3. We will
consider a case in which in one iteration of this map we have
the base value of the parameter a and in the next one we
have a+�a, so that we may write n=1 and m=1.
The function G��a ;xi� has the form
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G��a;xi� = f„a; f�a + �a; f„a; f�a + �a; f„a; f�a

+ �a;xi�…�…�… . �A2�

We want to obtain the value of

� �G��a;xi�
��a

�
�a=0

=
�G�0;xi�

��a
�A3�

because this derivative should be inserted into Eq. �9a�. An
expansion of the function �A2� into a series yields a sum of
three elements, because �a is present three times in Eq.
�A2�:

�G�0;xi�
��a

= A + B + C ,

A = � �f�a;x�
�x

�
x=u1

�f�a;u2�
�a

,

B = � �f�a;x�
�x

�
x=u1

� �f�a + �a;x�
�x

�
x=u2

� �f�a;x�
�x

�
x=u3

�
�f�a;u4�

�a
,

C = � �f�a;x�
�x

�
x=u1

� �f�a + �a;x�
�x

�
x=u2

� �f�a;x�
�x

�
x=u3

�� �f�a + �a;x�
�x

�
x=u4

� �f�a;x�
�x

�
x=u5

�f�a;u6�
�a

. �A4�

In the above, we have

u1 = f�a + �a; f„a; f�a + �a; f„a; f�a + �a;xi�…�…� ,

u2 = f„a; f�a + �a; f„a; f�a + �a;xi�…�… ,

]

u6 � xi. �A5�

If we take into account that the value of a �and a+�a of
course, as �a is close or equal to zero� is close to the critical
value aC at which the periodic orbit appears, we can apply

the approximation

65, 3211 �1990�.
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f�a;xi� � xi+1 �A6�

which leads to

u6 � xi,

u5 = f�a + �a;xi� � xi+1,

u4 = f„a; f�a + �a;xi�… � f�a;xi+1� � xi+2,

]

uk � xi+6−k, k = 1,2,¼,6,

xi+3 � xi. �A7�

Substituting it into �A4� we obtain

�G�0;xi�
��a

= A + B + C ,

A =
�f�a;xi+5�

�x

�f�a;xi+4�
�a

,

B = �
j=i+3

i+5
�f�a;xj�

�x

�f�a;xi+2�
�a

,

C = �
j=i+1

i+5
�f�a;xj�

�x

�f�a;xi�
�a

. �A8�

The sum �A8� can be written in the more compact form

�G�0;xi�
��a

= 

q=1

3 � �
k=2q

6
�f�a;xi+k−1�

�x
� �f�a;xi+2q−2�

�a
. �A9�

If m were greater than 1, in Eq. �A9� one sum more would
appear. It is not difficult to deduct the form of this sum and
to rewrite �A9� as

�G�0;xi�
��a

= 

q=1

3



j=1q+1�q−1�

2q−1 � �
k=j+1

6
�f�a;xi+k−1�

�x
� �f�a;xi+j−1�

�a
.
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